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Abstract
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what we call "classical" rearing conditions. These include normal rearing, monocular
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Experiments performed over the last three decades indicate that the response proper-

ties of neurons in striate cortex of the cat can be modified by manipulating the visual

experience of the animal during a critical period of postnatal development. While these

experiments do not provide detailed information about the molecular mechanisms in play

during synapse modification, they can shed light on the dynamics of synaptic change that

these mechanisms produce. A theory that can account for the observed dynamics may

yield vital insight in the search for the underlying molecular mechanisms. In addition, the

understanding such a theory might provide could make possible the use of visual cortex

as a preparation for the study of various complex interactions between neurotransmitters

and receptors that lead to learning and memory storage.

Such a theory has been developed in our laboratory to account for the wide variety

of experience-dependent modifications that have been observed in kitten visual cortex

(reviewed by Bear et al., 197). Originally, Nass and Cooper (1975) explored a theory

in which the modification of visual cortical synapses was purely Hebbian; that is, a

change to a synapse was based on the multiplication of the presynaptic and postsynaptic

activities and stabilization of the synaptic weights was produced by limiting modification

to cortical responses below a maximum. Cooper et al. (1979) incorporated the idea that

the sign of the modification should be based on whether or not the postsynaptic response

is above or below a threshold, 0. Responses above the threshold lead to strengthening

of the active synapses and responses below the threshold lead to weakening of the active

synapses. To stabilize the synapses without having to impose external constraints on

them, 0 was allowed to slide as a nonlinear function of the recent history of the cell's

postsynaptic response (Bienenstock, Cooper and Munro (BCM), 1982). BCM is a "single

cell" theory where modifications occur at the synapses of fibers from the lateral geniculate

nucleus (LGN) onto a single cortical neuron. Scofield and Cooper (1985) extended this to

a network of interconnected neurons, such as that in kitten striate cortex. To incorporate

the finding that some synapses may be more resistant to change than other synapses (e.g.

Singer, 1977), they introduced two types of cells into the network: cells with modifiable

synapses and cells with nonmodifiable synapses. The fully connected network was later
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simplified by Cooper and Scofield (1988) with the introduction of a mean-field theory,

which in effect replaces all of the individual intracortical connections to a cortical neuron

from every other cell in the network by one set of "effective synapses" that conveys to

the cell the average activity of all of the other cells in the network. Cooper and Scofield

(1988) showed that the evolution of LGN-cortical synapses is similar for either a single

neuron receiving only LGN input or a neuron embedded in a mean-field network.

Several other theoretical attempts have been made to model various aspects of

synaptic plasticity in visual cortex (e.g. Malsburg, 1973; Pirez et al., 1975; Linsker, 1986;

Miller et al., 1989). We reserve detailed comparison with these different approaches for

another publication. However, we note that one crucial distinction between BCM and

many other theories is the means of synaptic stabilization. In BCM this is accomplished

by a dynamically varying modification threshold, whereas these other treatments (e.g.

Malsburg, 1973; Pirez et al., 1975; Miller et al., 1989) require some sum over synaptic

strengths to remain constant. Without entering into a discussion here of which mech-

anism is more plausible, we note that it becomes an important experimental issue to

distinguish between these two very different mechanisms for synaptic stabilization. In

addition, the BCM theory (as will be made clear below) allows for precise specification

of theoretical equivalents of experimental situations allowing detailed and quantitative

comparisons of theory with experiment.

The aim of the present effort is to provide such a comparison of the BCM theory with

experiment for what we call "classical" rearing conditions. These include normal binoc-

ular vision, monocular deprivation, reverse suture, strabismus, binocular deprivation,

as well as the restoration of normal binocular vision after various forms of deprivation.

Comparisons with the various pharmacological manipulations that affect visual cortical

plasticity (e.g. Greuel et al., 1987; Reiter and Stryker, 1988; Bear et al., 1990) will be

considered elsewhere.

Review of Relevant Experiments .......................

Because the literature on visual cortical plasticity is not without some controversy, -
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it is useful to state our understanding of the consequences of the various visual envi-

ronments on visual cortical organization. The modifications of interest are those that

occur in kitten visual cortex during the second postnatal month after brief (< 2 weeks)

manipulations of visual experience.

1. Acquisition of orientation selectivity and binocular responsiveness during

patterned binocular vision (Normal Rearing, NR).

Important characteristics of the visual responses of most neurons in adult striate

cortex are that they (1) are binocular and (2) show a strong preference for contours of

a particular orientation (Hubel and Wiesel, 1962). In the early literature there is some

controversy concerning the acquisition of orientation selectivity in young animals. Ac-

cording to one extreme view, the development of this property occurs entirely postnatally

and requires patterned binocular visual experience (Barlow and Pettigrew, 1971; Petti-

grew, 1974). The opposing view is that this property is present in a rudimentary form

at birth and elaborates even in the absence of patterned visual input (Hubel and Wiesel,

1963). We adopt the view, which has emerged in the more recent literature, that while

some orientation selectivity is present in newborn animals and may improve without

visual experience during the first few weeks, maturation to adult levels of specificity and

responsiveness requires contour vision during the first two months of life (Barlow, 1975;

Blakemore and Van Sluyters, 1975; Buisseret and Imbert, 1976; Frignac and Imbert,

1978; Bonds, 1979; Movshon and Van Sluyters, 1981; Frignac and Imbert, 1984; Albus

and Wolf, 1984; Braastad and Heggelund, 1985). Evidently, the increase in selectivity

and responsiveness can occur quite rapidly; after dark-rearing, mature response proper-

ties can develop with only 6 hours of binocular contour vision (Imbert and Buisseret,

1975; Buisseret et al., 1978; Buisseret et al., 1982).

2. Monocular deprivation (MD) after a period of normal rearing.

The synaptic connections which generate binocular, selective responses in visual

cortex remain sensitive to manipulations of visual experience during the second and third

postnatal months. One manipulation is the deprivation of pattern vision through one eye,

usually produced by suturing the eyelid closed. This results in a loss of responsiveness
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to stimulation of the deprived eye (Wiesel and Hubel, 1963; Hubel and Wiesel, 1970;

Blakemore and Van Sluyters, 1974b; Olson and Freeman, 1975; Movshon and Diirsteler,

1977). This change in cortical ocular dominance can occur very rapidly, with noticeable

effects occuring in as little as 4 to 8 hours (Freeman and Olson, 1982). Recent chronic

recording studies indicate that the loss of deprived eye responsiveness is not necessarily

accompanied by an immediate increase in responsiveness through the open eye (Mioche

and Singer, 1989). It appears, however, that eventually there is an increase in open-eye

responsiveness and that cortical neurons responding to the open eye retain their original

selectivity.

The effects of lid suture evidently are caused by the loss of pattern vision rather than

a dimunition of retinal activity per se (Blakemore, 1976). For example, diffusing contact

lenses are as effective as lid suture in producing the ocular dominance shift (Wiesel and

Hubel, 1963; Blakemore, 1976). It should also be noted that in spite of the lack of

responsiveness, synaptic connections from the deprived eye are still physically present in

cortex (Duffy et al., 1976; Kratz et al., 1976; Tsumota and Suda, 1978; Burchfiel and

Duffy, 1981; Sillito et al., 1981; Freeman and Ohzawa, 1988).

3. Reverse suture (RS).

Blakemore and Van Sluyters (1974b) first showed that if, after a period of MD, the

deprived eye was opened and the formerly open eye sutured closed, then cortical neurons

would become responsive to the newly opened eye and lose responsiveness to the newly

closed eye. Acute studies indicated that as the ocular dominance of cortical responses

shifts from one eye to the other during RS, there is never a period when a substantial

number of cells can be strongly, and equally, activated by both eyes (Movshon, 1970).

Indeed, recent chronic recording experiments of Mioche and Singer (1989) demonstrate

that neurons lose responsiveness to the newly deprived eye before the newly opened eye

shows any recovery, thereby preventing cells from showing strong binocular responses.

The majority of neurons lose responsiveness within 24 hours of the RS, followed by a

recovery of newly opened eye responsiveness over the next 48 to 72 hours. These exper-

iments also indicate that as the initially deprived eye synapses to visual cortex recover,

4



the original orientation selectivity emerges. However, in their acute RS experiments

Blakemore and Van Sluyters (1974b) and Movshon (1976) find binocular neurons with

different optimal orientations in tests of the two eyes, leaving open the possibility that

during recovery the initially deprived eye can acquire an optimal orientation different

from its originally preferred input.

4. Strabismus (ST).

Hubel and Wiesel (1965) first showed that misalignment of the two eyes by sec-

tioning an extraocular muscle results in a loss of binocular responsiveness. Subsequent

experiments have repeatedly verified Hubel and Wiesel's results; either divergent or con-

vergent squint produces cortical neurons that are generally responsive to one eye or the

other, but not both (Yinon et al., 1975; Yinon, 1976; Ikeda and Tremain, 1977; Blake-

more and Eggers, 1978; Van Sluyters and Levitt, 1980). The critical feature in producing

the loss of binocularity is the lack of correlated input in the two eyes. Numerous results

indicate that a loss of correlated input, either by alternating occlusion, rotating the im-

age in one eye relative to the other eye, or producing different patterns of illumination

on corresponding regions of the two retinae simultaneously, eventually leads to a loss

of binocularity (Blakemore and Van Sluyters, 1974a; Blakemore, 1976; Cynader and

Mitchell, 1977; Blasdel and Pettigrew, 1979).

5. Binocular deprivation (BD).

There is general agreement that the consequences of depriving both eyes of normal

vision are substantially different from the effects of MD. Whereas several days of MD are

sufficient to cause a functional disconnection of the deprived eye, an equivalent period

of BD leaves most cortical neurons responsive to stimulation of either eye (Wiesel and

Hubel, 1965). However, quantitative studies indicate that brief periods (5 1 week) of

binocular deprivation (by placing the animals in a darkroom) produce a 50% drop in

peak neuronal responsiveness to the preferred orientation and s slight broadening of

orientation selectivity (Freeman et al., 1981). Longer periods of binocular deprivation

lead to a further decrease in responsiveness and selectivity. (The effects of long-term

binocular deprivation seemingly differ depending on whether the deprivation is produced

5



by suturing both eyelids or by placing the animal in complete darkness. After binocular

lid suture there appears to be a loss of binocularity (Kratz and Spear, 1976; Watkins

et al., 1978; Mower et al., 1981), which is not seen during dark-rearing (Freeman et al.,

1981; Mower et al., 1981)).

6. Recovery from the effects of deprivation (RE).

The extent of a neuron's recovery of its normal receptive field properties during

binocular vision after a period of deprivation appears to depend on the duration of the

deprivation and its possible effects on eye alignment. Dark-rearing generally produces

a population of cortical neurons that are poorly responsive to stimulation of either eye.

Brief periods of binocular vision after weeks of dark-rearing lead to the development

of substantial levels of selectivity, responsiveness and binocularity in a very short time

(Buisseret et al., 1978, 1982), whereas binocular vision after prolonged periods of dark-

rearing often produces cortical neurons that are responsive but not binocular (Cynader

et al.,1976; Cynader, 1983). As Cynader (1983) points out, the longer periods of dark-

rearing can lead to eye misalignment and the loss of correlated input when vision is

restored, which is sufficient to cause a breakdown in binocularity. Similarly, if a brief

period of monocular deprivation is followed by a period of patterned binocular vision,

then cortical neurons can regain their binocular receptive fields (Blasdell and Pettigrew,

1978; Freeman and Olson, 1982). Binocular vision after longer periods of monocular

deprivation leads to the recovery of some cortical cells' receptive field properties in the

deprived eye without an attendant rise in binocularity (Hubel and Wiesel, 1970; Mitchell

et al., 1977; Olson and Freeman, 1978). The lack of binocular neurons in these kittens

again may be due to the development of a strabismus during the longer periods of

monocular deprivation (Mitchell et al., 1977; Olson and Freeman, 1978).

In this paper we present a detailed development of the BCM theory that is able to

account for these varied experimental results. This work confirms and extends previous

mathematical analyses and yields predictions that should be experimentally verifiable.
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METHODS

A mean-field approximation to the full complexity of visual cortex has been de-

scribed previously (Scofield and Cooper, 1985; Cooper and Scofield, 1988). In this ap-

proximation, it is proposed that visual cortex (and possibly other regions of cortex) can

be treated by a combination of statistical and single cell methods, allowing the evolution

of some of the synapses (e.g. the LGN-cortical synapses) to be analyzed in detail. In

what follows we briefly review this approach.

Consider a single cortical neuron receiving an array of LGN fibers from the left

and right eyes (Figure 1). This neuron can be viewed as the ith" cell in a highly

interconnected network with both excitatory and inhibitory connections. In the mean-

field approximation of this intricate network the intracortical connections to the "ith

cell are replaced by a set of synaptic weights that convey to the cell the average activity

of the other cells in the network. A further simplification that we employ in this paper

is to treat the mean-field connections to the cell in the adiabatic limit; that is, the

mean-field connections to the "ith" cell are assumed to remain constant while the cell's

LGN-cortical synapses seek their equilibrium values. According to the analysis of Cooper

and Scofield (1988), this does not change the position and/or the stability properties of

the equilibrium states. However, it does change the rate at which these equilibrium

states are approached, thus possibly having an effect on the various rates of evolution

of the synapses during simulations of the rearing paradigms presented here. Detailed

analysis of these effects will be described elsewhere.

Cooper and Scofield (1988) have also shown that the LGN-cortical synaptic weight

equilibrium states of the "ith cell in the simplified adiabatic mean-field network can be

obtained by a simple transformation of the equilibrium values of the synaptic weights of

a single isolated cell that has only LGN input. An important consequence is that if the

isolated single cell equilibrium states have negative components, the mean-field can be

chosen sufficiently inhibitory to insure that the equilibrium states of the LGN-cortical

synaptic weights of the "ill" cell in the mean-field are strictly positive. Thus we can

treat a single isolated cortical cell whose synaptic weights are allowed to have positive
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and negative values without violating biological constraints; the results obtained for the

single isolated cortical cell are applicable to a cell in a mean-field network with only

positive LGN-cortical synaptic weights.

1. Postsynaptic cortical cell response.

We denote the response of the single cell at time t by the scalar c(t). c(t) is de-

pendent upon the LGN-cortical afferent activity d(t) and the weights, or efficacy, mn(t)

of the LGN-cortical synapses. In general, the output c(t) is a non-linear function of the

input d(t) and the weights zn(t). However, we assume that there is a region of linear

dependence of c(t) on d(t) and m(t). The existence of such a linear region appears to

have some experimental justification (Ohzawa and Freeman, 1986a, 1986b). Therefore,

for the purposes of the present paper, c(t) is written as

c(t) = re(t),- d(t), (1)

i.e. the sum over all of the synapses to the postsynaptic target cell of the activity of each

LGN-cortical afferent fiber multiplied by the strength of the synaptic connection of that

fiber with the postsynaptic target cell.

2. LGN Input.

To model the input to visual cortex that arises from the regions of the two retinae

that view the same point in visual space, we assume that LGN activity is a precise

mapping of retinal ganglion cell activity. (This means that a specific image results in a

specific distribution of LGN activity.) Two types of LGN-cortical input are of particular

interest: (1) activity elicited when visual contours are presented to the retinae ("pattern"

input); and (2) activity that arises in the absence of visual contours ("noise") (Figure

2). From our point of view the important distinction between pattern and noise input is

the degree of correlation that the two types of input produce in the LGN activity. For

a specific input "pattern" the activity of one LGN neuron is assumed to have a precise

relation to the activity of other LGN neurons, while for "noise" the activity of one LGN

neuron is independent of the activity of the other LGN neurons. Differences between

distinct patterns (for example, between various stimulus orientations) are mapped into

different distributions of activity across the LGN. The extent to which this is a reasonable
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model of a visual environment is currently under investigation (D. Sheinberg, work in

progress).

It is possible that the activity of neighboring ganglion cells may be correlated in

the absence of contour vision (Mastronarde, 1983a, 1983b, 1989). These correlations

are possibly important for aspects of cortical development that occur before birth (e.g.

Miller et al., 1989). However, it is not necessary to incorporate these local correlations

to capture the results of the postnatal deprivation experiments using the BCM theory,

nor would incorporation of these correlations substantially alter the outcome of the

simulations. Our work does incorporate the fact that retinal ganglion cells and LGN

neurons fire action potentials spontaneously in the absence of light (Kuffler et al., 1957;

Hubel and Wiesel, 1961; Barlow and Levick, 1969).

As illustrated in Figure 2, the salient features of the input environment can be

modelled using a one dimensional array of LGN fibers from each eye as the input to

the cortical neuron. Accordingly, apart from noise fluctuations, a specific input pattern

always corresponds to the same distribution of activity across the array of LGN fibers

from each eye. The consistent and unique distribution of activity corresponding to

a specific input pattern (not the actual shape of the distribution of activity) is the

critical feature. For example, in the third row of Figure 2 the pattern of LGN activity

corresponding to a horizontal bar of light on the retina is represented as a unimodal

distribution of activity with a peak activity on one fiber and slightly lower activities on

the immediately adjacent fibers. This pattern of activity is the signature for a horizontal

bar of light: each time a horizontal bar of light is imaged on the retina this same pattern

of LGN activity is generated (apart from superimposed fluctuations, or "noise"); no

other pattern of retinal stimulation leads to this pattern of activity. The choice of

a unimodal distribution of activity is for convenience; it is in no way essential. Any

distribution of activity could be choosen to represent a horizontal bar of light, as long

as 1) this distribution occurs whenever a horizontal bar of light is on the retina and 2)

this distribution differs from that arising when bars of other orientations are presented.

Activity along an array of N 1 fibers is represented as a vector in an Ngi-dimensional
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space. For example, the array of LGN-cortical input fiber activity from the left eye at

time t is written as a single vector d(t). (As a rule, symbols appearing in bold face rep-

resent vectors and symbols appearing in plain type represent scalars. Bold face symbols

that are italicized represent vectors that have both a left and right eye component; the

left and right eye components are designated by the superscripts I and r, respectively.)

The array of synaptic weights formed by the LGN-cortical fibers from the left eye to

the neuron is denoted by the vector ml(t). The j'h component d!(t) of the vector d,(t)

is a scalar representing the fiber activity of one (the jth) left eye LGN-cortical afferent;

the jth component n!(t) of the vector ml(t) is a scalar representing one (the jth) left

eye LGN-cortical afferent synaptic weight. For the corresponding right eye quantities

we have the vectors dr(t) and m'(t) with components dl(t) and mir(t), respectively.

Therefore, the total input to the cell with synapses m(t) = (mI(t), mr(t)) at time t is

d(t) = (dl(t),dr(t)).

Input to the simulated neuron at time t, i.e. d(t) = (dl(t),dr(t)), is measured

with respect to the average spontaneous activity of each of the LGN-cortical fibers. For

example, the input from the left eye at time t to the jth synapse of the simulated cortical

neuron is

d!(t) = dlj(t) - d~j, (2)

where dj(t) is the actual firing frequency and d~j is the average spontaneous activity

of the jth left eye LGN afferent fiber. For simplicity, we assume that dlj is independent

of time, the eye and the fiber; that is, d.j = d. = d. for all of the LGN fibers at each

time t. Therefore,

d!(t) = d'-(t) - d. (3a)

and
d (t) = d'j(t) - d5. (3b)

The corresponding vector equation for all of the fibers is

d(t) - d.(t) - d,, (4)

which implies that

d(t) d (t) - dj (4a)
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for the left eye fibers and

dr(t) = dr(t) - d (4b)

for the right eye fibers.

During simulations of binocular or monocular deprivation, we assume that the de-

prived eyes are receiving noise input. For example, to model noise input to the left

eye (the right eye would be exactly the same) assume that dlj(t) fluctuates randomly

around do, implying that d!(t) fluctuates around 0. We call these fluctuations of d!(t)

around 0 "noise" and label them n](t). The input to the cortical neuron in the absence

of patterned activity is then simply

dl(t) = n!(t) (5)

for the j"h fiber of the left eye (Tables 1 and 2).

In normal rearing or monocular deprivation the open eyes of the animal are con-

stantly viewing regularly shaped objects, which are assumed to give rise to correlated

patterns of LGN activity. For example, left eye contour vision of a specific object gives

rise to a pattern of LGN-cortical fiber activity which we label by dl(t) = d' , , where

the w represents a particular pattern of correlated activity corresponding to a specific

visual stimulus at time t. Now the input to the j'1 left eye synapse of the neuron, d!(t),

measures the departure of dlj(t) - d,4 from the spontaneous rate do:

d!(t) d'.(t) - d, = d&" 'j4 ,. (6)

Note that even though d is positive, d! (t) may have positive and negative values. Since

in an actual visual environment there generally will be random fluctuations in d] (t) for

multiple presentations of the same visual stimulus labelled by W, we add a noise term to

the input which we again call nl(t) (Tables I and 2):

d] (t) = d j - do + ni!(t). (7a)

Defining dW" = d'4 - do, the input to the jth left eye synapse of the neuron for the

pattern labelled by w presented at the time t becomes

dl(t) - d4j + nl(t). (7b)
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These are the "patterns" presented during the developmental portion of the simulations;

for "tests" of responses the noiseless patterns d7" are presented to the cell. With the

same arguments for the right eye, a normal, binocular viewing experience at some time t

leads to a specific correlated pattern of activity d' = (d, dr) with noisy fluctuations

n(t) = (nl(t),nr(t)), so that

d(t) = (d'(t), dr(t)) - (dI + a' (t), d"' r + nr(t)). (8)

3. Synaptic modification.

Synaptic modification is governed by the rules of the BCM theory. According to

BCM, modification of the jth synaptic junction at time t (dmj(t)/dt) is proportional

to the product of the input activity of the jth left eye LGN-cortical fiber (dj(t)) and a

function 4 which is defined in terms of the postsynaptic response.

The behavior of 0 at two values of the postsynaptic response is particularly impor-

tant (Figure 3A). The first is the average postsynaptic cortical cell activity due to the

spontaneous firing of action potentials in the presynaptic LGN-cortical afferent fibers.

(Note that we are assuming that the cortical cell spontaneous activity is due entirely to

LGN-cortical input, thereby neglecting network effects.) Recall that the average level of

this activity is dependent on d, for each LGN fiber of each eye. Letting d, = (d , d;)

represent the spontaneous activity of all of the incoming LGN fibers to the cell, the

average "spontaneous" activity of the postsynaptic neuron is (Tables 1 and 2)

c1(t) = m(t), d. = ml(t) • d + m'(t) • d. (9)

c.(t) serves as the baseline for measuring the impact of the current LGN-cortical

afferent fiber activity on the prevailing state of the postsynaptic cell. If the LGN-cortical

afierent fiber activity goes above its average spontaneous level, the postsynaptic cell is

depolarized compared to its average "spontaneous" state. On the other hand, if the LGN-

cortical afferent fiber activity drops below its average spontaneous level, the postsynaptic

cell is hyperpolarized compared to its average "spontaneous" state. This departure of

the postsynaptic respoLie from its average "spontaneous" state is the measure of the
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postsynaptic cell response in the model. The 0 function is zero at c.(t) with a negative

slope (co) at postsynaptic response levels above cd(t).

The second important level of postsynaptic cell response occurs at a value designated

by c°(t) + e. Here 0 changes sign from negative to positive with a positive slope (Ce).

According to the BCM theory, the value of 0 changes as a power (larger than one) of

some measure of the average postsynaptic response. This important feature of 6 insures

the boundedness of the synaptic weights without placing artificial constraints on them

and guarantees that 0 > 0. Therefore, the threshold defined by c°(t) + 0 is never at a

level of postsynaptic response lower than c.(t). Furthermore, when all of the synaptic

weights approach 0 and c.(t) ; 0 for all t, 0 must also eventually approach 0, thereby

allowing for the possible recovery of synaptic strength.

For synaptic modification the departure of the postsynaptic cell response from co(t)

is the measure of interest. Therefore, we define

c(t) = c.(t) - c.(t), (10)

where

c,(t) = m(t), d.(t) = m'(t) , d'(t) + mr(t) , dr(t), (10a)

which is equivalent to

C(t) = M, (t), d ](t) +I Mr (t) • d(t). (1

To incorporate non-LGN input to the cell that is independent of the LGN input a noise

term is added to c(t):

c(t) = m'(t) • d(t) + mr(t) .dr(t) + c-no(t), (12)

where c.ie(t) is assumed to be uniformly, randomly distributed about 0 (Tables 1 and

2). Thus, for 4) the two important values of postsynaptic response are at c(t) = 0 and

c(t) = 0. The BCM rule for synaptic modification can now be written (Tables 1 and 2):

din(t)d--t- = P? 0 (c(t), 0(t)) d(t), (13)

where 4 is a function such that

O(c= 0,0) = (c= ,) = 0 (13a)
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and the slope of 4 at c greater than zero (co) is negative and the slope of 4 at c = 0

(ce) is positive (Figure 3B). The factor Y7, which we call the modification "step size," is

a positive constant that determines the magnitude of the synaptic modification at each

iteration.

One of the most striking characteristics of the BCM theory is the moving threshold.

It is this moving modification threshold that provides the stability of the system. This

contrasts with other synaptic modification proposals such as that of Malsburg (1973),

Pirez et al. (1975) and Miller et al. (1989), where stability is produced by the require-

ment that some sum over the strengths of the synapses be constant.

In their original paper BCM (1982) chose as a candidate for 0 the average value of

the postsynaptic firing rate:

0(t) . , (14)
co )

where c(t) represents a time average of the departure of the postsynaptic firing rate from

its spontaneous level, i.e.

= I f t  
__

c(t) - c(t')e- dt', (14a)

p sets the degree of nonlinearity (p > 1), and co is a normalization constant. This

produced a workable system with the desired stability properties. However, the precise

value of p and the interpretation of the cell response remained open. For example, should

one use the actual firing rate of the cell or the average depolarization of the postsynaptic

dendrite? If one used the average depolarization, was the appropriate quantity the

total depolarization or its deviation from its spontaneous level. Such questions remain

unanswered because no experiments exist to fully distinguish between their consequences.

However, recent experimental innovations, such as the chronic recording technique

developed by Mioche and Singer (1988), now place us in a position to investigate much

more closely several key features of the moving threshold. Consider two: (1) How rapidly

does the moving threshold adjust to changes in the cell response brought on by a manip-

ulation of the visual environment? And (2) How should the time averaging (represented

by the double bars) and the nonlinearity p relate to each other?
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Addressing the second question first, BCM (1982) time averaged the cell response

first and then raised the time average to the power p. Recent work (Intrator, 1990)

indicates that a 0 based on a time average of the squared cell response, i.e.

0(t) = c(t)P  (15)

with p = 2, has some useful mathematical properties; this form also appears to produce

an evolution of the synapses in agreement with the experimental results discussed in the

present work.

With regard to the first question, the two elements that control the rate at which 0

moves are 7" and the feature of the cell response that sets 0. As r goes to infinity (i.e. as

the memory of the time average goes to infinity), the threshold adjusts more slowly to

changes in the cell response. Therefore, if 9 is high and the cell response suddenly drops,

then for large r, the threshold, 0, drops slowly to a level consistent with the prevailing

cell response.

The exact feature of the cell response that should be used to set 9 is not known

at present. However, inspection of Eq. 10 does provide two distinct possibilities: 1)

the total response of the cell (c.); or 2) the original BCM choice: the deviation of

the cell response from its spontaneous level (c). This distinction is important since a 0

dependent on c is much more sensitive to changes in the environment than a 0 dependent

on c,. When no patterns are present in the input (Eq. 5), c(t) : 0 on average, whereas

cc(t) z. m(t) . on average. In this situation, after the first " iterations, 0 based on c is

near 0, whereas 0 based on c. is at some positive level. If 0 was nonzero at the start of

the simulation, then the percentage change for 0 dependent on c is much larger than the

percentage change for 0 dependent on c.. All of the key features of 0 that are currently

unspecified provide a rich area for further investigation.

In this paper we choose 9 to be

9(t)= , ( (16)

where

cc(t) = m(t), d. (t) (16a)
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is the actual cell response, the double bar as usual represents a time average of the

underlying quantity, i.e.

c -(t) = !J c,(t')e • dt', (16b)

and co is again a normalization constant (Tables 1 and 2). With this choice of 0 we are

able to model the classical deprivation experiments described above.

4. Simulations.

The visual deprivation experiments we attempt to model are NR, MD, RS, ST, BD

and RE. Each of the experimental paradigms can be simulated with some combination

of two types of input to the two eyes: noise, i.e. nI(t) and nr(t), and patterns with noise

superimposed, i.e. d" + nI(t) and d','" + nr(t) (1 < w < Np).

For example, during NR the input for the two eyes at time t is assumed to be

patterned for each eye and correlated between the two eyes with each pattern of activity

having the same probability of occuring:

dI(t) = dl" + ni(t) (17a)

and

d (t) - dj'" + nj(t), (17b)

where w is chosen randomly from the set of Np patterns at each iteration and n](t) and

n (t) are independent, but statistically equivalent, noise terms. MD is similar to NR

except that patterned activity is absent from the eye (left) simulated as closed:

d!(t) - n!(t) (18a)

and

dj(t) = d7' " + n (t). (18b)

RS is accomplished by changing the eye that is closed after an initial period of MD.

Therefore, if for the initial period of MD the left eye is closed, then for RS the input is

dl(t) - dr" + ni(t) (19a)
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and

dj'(t) = nj(t), (19b)

which corresponds to the right eye closed. BD is simulated by a total lack of patterned

input to the two eyes:

d! t) = n!(t) (20a)

and

dj'(t) "- nj(t ) . (20b)

Finally, in a simulation of ST patterns are input to both eyes, but the patterns are

uncorrelated:

d'C) = ; n (t )  (21a )

and

dj(t) =dw"r + nr(t), (21b)

where w and w' are independently and randomly chosen from the set of N. patterns at

each time step.

With this choice of the set of patterned and noise inputs and the synaptic mod-

ification rule the sequence of events in a simulation of any experimental paradigm is

relatively straightforward (Saul and Clothiaux, 1986). First, at each step t - dt to t

a pattern of activity d(t) is generated that represents the activity of the LGN-cortical

afferents during the interval dt. The activity assignments to d(t) must be consistent

with the particular visual experience paradigm that is being simulated. Once the vector

d(t) is constructed, the resulting cell response c(t) is calculated according to Eq. 12 and

dm(t)/dt is then determined according to Eq. 13. The whole process is repeated until

the synaptic weights m(t) reach equilibrium.

The dynamics of the evolution of the cell response tuning curve to its final equilib-

rium value is the information of interest. To follow the change in cell response selectivity

and ocular dominance during a simulation, the modification process is periodically in-

terrupted in order to assess the synaptic weight vector m(t). With a record of me(t) at
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various intervals during the simulation, a history of the changes in cell response selec-

tivity and ocular dominance can be easily reconstructed. The cell responses generated

by stimulation of the left and right eyes separately with all N. of the noiseless input

patterns dW, and dl,', respectively, are taken to be the "tuning curves" of the two eyes:

Left EyeTuning Curve(t) = {clW(t) = ml(t) d'" Iw = I,...,Np) (22a)

Right Eye Tuning Curve(t) = {c"'(t) = m'(t) .d, " Iw = 1,...,Np). (22b)

Since patterns labelled by w and w + 1 are most similar in their distribution of activity

across the LGN-cortical afferents, plotting cl,"(t) and c","(t) versus w (in ascending

order) leads to graphs that are interpreted as analogous to visual cortical neuron response

curves obtained experimentally by presenting a light bar across the retina at different

orientations.

In this paper a single set of parameters is used to model the kitten visual deprivation

experiments. This choice of parameters leads to an evolution of the synapses in agreement

with experiment. In the discussion the effects of changing the parameters on the evolution

of the synapses are considered in more detail.
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RESULTS

A primary motivation for the original BCM theory was to account for the acquisition

of selectivity by cortical neurons in a normal patterned environment. How this comes

about is illustrated by the simulation in Figure 4. At the beginning of the simulation

the LGN-cortical synaptic weights start with random values between 0 and 0.15. Since

there is no bias in the synaptic weights, all of the input patterns initially produce a small

cell response that may be either slightly above or below 0. During training, when the

various patterns are presented at random to the cell, the synaptic weights associated with

positive input activity (dj > 0) strengthen when the response goes above 0 (implying

4 > 0) because according to Eq. 13 dmj/dt = q 0 dj and q4,d j > 0 (Figure 5). On

the other hand, the synaptic weights associated with high input activity (dj > 0) when

the postsynaptic response fails to reach 0 (implying 4, < 0) weaken. As pointed out by

Bienenstock et al. (1982), this results in competition between patterns of activity with

the consequence that the synapses that consistently participate in the activation of the

cell above 0 increase in strength, while the synapses whose activity fails to correlate with

target activation beyond 0 decrease in strength.

Growth in the cell response to some of the input patterns leads to an increase in 0,

decreasing the likelihood of further increases in synaptic strength. Eventually, 0 becomes

large enough to stabilize the synaptic weights; that is, for 9 sufficiently large the average

change to the synaptic weights over all of the input patterns is 0 and the cell response

to any particular pattern no longer changes significantly. Notice that this stability is

dynamic: for each iteration of the simulation there are small changes in the synaptic

weights; over many iterations, however, the changes to the weights average to 0.

The format of Figure 4 is used to illustrate the results of the various simulations

in Figures 6 through 13. The x axis labeled by "stimulus 'orientation' " represents the

different patterns in the testing set and the vertical y axis represents the response of the

cell to these patterns. The z axis of the graph represents time or, more precisely, the

number of iterations. The evolution of the cell's tuning curve is illustrated by the plot

of "cell response" versus "stimulus 'orientation' " at each iteration. As Figure 4 shows,
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presentation of patterned input to a cell quickly leads to robust responses to a select

number of the input patterns. Since 0 adjusts to changes in the cell response, the peak

cell response eventually stabilizes at some nonzero value. (This value depends on various

parameters, such as p, co and r.)

1. Normal Rearing (NR)

The NR simulation starts from poorly developed left and right eye synapses (i.e.

random values between 0 and 0.15). The input to the two eyes is taken to be correlated

patterns with noise superimposed (Eq. 17). As expected, the cell acquires responsiveness

and selectivity (Figure 6). With a growing cell response, 8 increases and eventually

stabilizes the synaptic weights. Notice that the cell becomes selective to the same input

patterns through the LGN-cortical fibers from each eye; this is because the left and right

eye patterns are identical at each iteration, apart from noise. Although we assume no

initial orientation preference, if some orientation preference is present initially, the cell

will almost certainly become selective to this orientation.

As discussed before, the value of T determines the rate at which 0 moves. The rate

at which 0 moves in turn affects the choice of a modification step size 17. The modification

step size q (Eq. 13) must stay below an upper bound that is a function of the memory

r (Eq. 16b). As r increases, implying a longer memory of c.(t) in the calculation of

0, the upper bound on il decreases. If ,i is too large for a given value of r, then the

modification threshold 0 cannot adjust rapidly enough to stop initial large increments

in the cell response. When 0 finally does increase, it over compensates and drives the

cell response back to zero. The synaptic weights and threshold oscillate in an unrealistic

manner. Thus we are restricted to a domain of r and q that leads to an acceptable

evolution of the system.

Once r and q are fixed at values that lead to a realistic evolution of the synaptic

weights, the next important parameter that affects the outcome of the NR simulation

is the normalization constant co which is used in the calculation of the value of 0 (Eq.

16). co sets the level of 0 with respect to the initial cell response. For example, as co

increases, 0 decreases and the cell's initial responses have a higher probability of going
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above 8; hence, the synaptic weights have a higher probability of initially increasing in

strength. Notice also that increasing co causes the system to stabilize at higher synaptic

weights.

Finally, the magnitude of the nonlinearity p must be set. The only stringent criterion

that p must satisfy is p > 1. In most of our work we set p = 2. This produces a sizable

nonlinearity that leads to an acceptable evolution of the system. Generally, as p increases,

6 moves more rapidly as the average cell response changes; therefore, increasing the value

of p leads to smaller stabilized synaptic weights during NR.

2. Monocular Deprivation (MD)

After the period of NR has driven rn(t) to a stable, selective state, the simulation of

MD begins by "closing the left eye." That is, the input to the left eye loses its patterned

component while the right eye does not (Eq. 18). As Figure 7 illustrates, the newly closed

eye LGN-cortical synapses immediately begin to drop in strength with a consequent loss

of closed eye response. After the closed eye input is almost completely ineffectual in

evoking a response, the open eye actually inceases in efficacy and eventually stabilizes

at an enhanced level; the amount of this open eye enhancement is sensitive to the choice

of parameters.

The immediate drop in the cell response after the onset of MD causes a gradual

drop in 0. However, 0 remains far from 0 after its initial drop because the open eye

input remains effective in driving the cell. When 9 is high and the total postsynaptic

response is near 0, the closed eye LGN-cortical synapses receiving "noise" input decrease

in strength. During MD, the postsynaptic response is near 0 whenever the open eye

is presented a non-preferred pattern. On the other hand, when the total postsynaptic

response is near 0, as would occur when a preferred pattern is shown to the open eye, the

closed eye LGN-cortical synapses receiving "noise" input actually increase in synaptic

strength. Therefore, during MD, the ratio of preferred to non-preferred open eye patterns

determines whether the closed eye synaptic weights increase or decrease in strength.

(This effect was analyzed by BCM; a detailed treatment is given in the appendix).

The relationship between open eye selectivity and the evolution of the closed eye
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synaptic weights is an integral feature of BCM (1982). To illustrate this aspect of the

theory in more detail consider N consecutive iterations of the simulation, where N is

much greater than the number of patterns in the training set but much less than the

number of iterations necessary for a significant change in the synaptic weights. For those

iterations for which non-preferred patterns are presented to the open eye so that the cell

response is close to 0 (No in number), the average change to the jth closed eye synapse is

dm. (t) I

where to is the slope of 0 at the origin and n2 represents the average of the square of

the noise input to the jth left eye fiber. On the other hand, for all of those iterations for

which preferred patterns are presented to the open eye so that the cell response is close

to 0 (No in number), the average change to the jth closed eye synapse is

d t e/C )nrn .(t), (23b)

where to is the slope of 0 at 0 and n 2 again represents the average of the square of

the noise input to the jth left eye fiber. Combining Eq. 23a and Eq. 23b, and setting

f= -o = e for simplicity, the average change to the jth closed eye synaptic weight

during each of the N iterations is

drn(t) (NNo Not
dt N n i , (23c)

which has the solution

mi2(t W mi (0) e (ai.)Tt(24)

where n.(0) is the synaptic strength at the beginning of the MD (see Figure 8 and

the appendix). Therefore, the relative number of optimal to nonoptimal cell responses

through stimulation of the open eye determines whether the closed eye synaptic weights

increase or decrease. For a selective set of LGN-cortical synapses N, < NO; therefore,

the closed eye synaptic weights go to 0 during MD if the cell is selective. This is the

source of the correlation between ocular dominance and selectivity during MD.
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As Eq. 24 indicates, the rate of disconnection of the closed eye during MD also

depends on q/, c and the level of the noise to the closed eye (n2 ). Since r7 and c are set

to provide appropriate behavior for NR, the ratio of optimal to nonoptimal open eye

patterns and the level of the closed eye noise are the only remaining quantities that can

be varied during MD. One has the nonintuitive, experimentally testable prediction that

higher levels of noise lead to a faster disconnection of the closed eye synapses, while

broadening of cortical orientation selectivity slows the disconnection of the closed eye

synapses.

The open eye synaptic weights eventually increase during MD because the initial

drop in 0 is large enough to bias the cell response to open eye patterned input toward

the positive region of 4 above 0. Therefore, the open eye efficacy goes up until it drives

0 sufficiently high to stop further increases in the synaptic weights. The amount of this

increase is sensitive to the choice of parameters.

3. Reverse Suture (RS)

Following a period of MD, RS consists of closing the open eye and opening the closed

eye. For the simulation, if the MD input is given by Eq. 18, then for RS the input is

switched to Eq. 19. With such a change of the input to the simulated cortical cell, the

newly closed eye LGN-cortical synaptic weights immediately begin to weaken (Figure

9). After the newly closed eye is almost completely disconnected, the newly opened eye

finally begins to show a recovery. As the newly opened eye continues to recover, the

newly closed eye synapses are eventually driven to 0.

The evolution of the synaptic weights at the beginning of a RS simulation depends

critically on the behavior of 0. In this simulation 0 remains high at the beginning of

the RS for a relatively long time. During this time the newly closed eye synapses are

receiving noise and the newly opened eye synapses are weak and ineffective in driving the

cell. Therefore, the newly closed eye synapses initially weaken at a rate governed by Eq.

24 with No = 0. Furthermore, the newly opened eye synapses cannot recover initially

since they are unable to produce responses above 0 for any of the input patterns. As the

simulation proceeds, 0 eventually drops low enough for the poor open eye responses to
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exceed it and the open eye begins to recover. At this point the closed eye has almost no

influence on the cortical cell.

If 0 drops slowly at the beginning of a RS simulation, then the preceding argument

indicates that the closed eye synapses always weaken before the open eye recovers. How-

ever, if 0 were to drop quickly, the closed eye would not weaken until the open eye had

recovered and 0 had increased. Mioche and Singer (1989) find that the previously closed

eye always weakens before the newly opened eye recovers. These results indicate that 0

should not drop too quickly at the beginning of a RS.

4. Strabismus (ST)

Suppose that after a period of NR, the two eyes become strabismic. The moment

the input to the two eyes becomes uncorrelated (Eq. 21) in a simulation, the eye that has

the dominant input to a cortical cell holds the cell in a winner take all situation (Figure

10). The weaker eye becomes completely disconnected on a timescale comparable to

monocular deprivation. Note that the results of a ST simulation do not depend critically

on any of the parameters. As long as the input is given by Eq. 21, there are no

binocular, stable, selective equilibrium states; the only stable, selective equilibrium states

are monocular. This result does not depend on the initial state.

5. Binocular Deprivation (BD)

For BD after NR the starting point is the stable, selective equilibrium state of me(t)

that developed during the prior period of NR. The important aspect of the input for

binocular deprivation is that it does not contain patterns of correlated activity (Eq.

20). Once the correlated activity is removed from the input, the cell's responsiveness

immediately drops. The loss in responsiveness during BD leads to a weakening of the

synaptic weights; however, on the same timescale as MD the drop in the weights during

BD is not as precipitous (Figure 11). On a longer timescale, however, the average

responsiveness to stimulation of both eyes is reduced to low levels whose exact value is

dependent on the parameters (Figure 12). Further, the original orientation tuning of

the cell is completely lost. Thus, unless there were a built-in preference, due perhaps to

innate non-modifiable synapses or network effects, the return of patterned input could
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lead to selectivity to a different orientation.

When BD begins, the situation for both eyes' LGN-cortical synapses is similar to

the newly closed eye's synapses on the cortical cell during the initial stages of a RS. In

both cases there are LGN-cortical fibers carrying noise at a time when the cell response is

always low and 0 is high. Therefore, during the initial stages of BD after NR, Eq. 24 with

No = 0 is applicable to the synapses of both eyes and both sets of closed eye synaptic

weights start dropping. Since there is no patterned input to keep 9 high, however, 0

also starts to drop, causing Np to increase from 0 and thereby slowing down the rate of

decrease of the synaptic weights.

The final state of the synapses depends critically on the average value of the noise

along each fiber (T), the average level of the noise fluctuations along each fiber (n2 ) and

the level of the postsynaptic noise c.oie(t). When = = 0 and 0 is nonzero, the only

equilibrium state for the system is at m(t) = 0. However, when 0 eventually approaches

0 in response to m(t) going to 0, the synapses start undergoing a random walk that takes

m(t), and hence 0, away from their respective origins. The degree to which m(t) departs

from the origin depends on the magnitude of n 2 and the amplitude of the postsynaptic

noise coi0 e(t). As both n 2 and the amplitude of coi0 e(t) increase, thereby increasing

the scatter of the cell response about its spontaneous level, the random walk around the

origin becomes more noticeable in the sense that m(t) can spend more time further from

the origin.

For 9 6 0 the synaptic weight vector m(t) is not constrained to remain at the origin

on average. As W departs from 0, simulations and preliminary analyses suggest that

a number of equilibrium states appear whose distance from the origin increases as the

magnitude of I increases. These points are usually, but not always, unselective with

respect to the original set of training patterns used during NR. Further, for reasonable

values of "n, the cell's response remains poor as compared to its NR levels. These results

were obtained using Eq. 16 for 0; further investigation is required to determine the

evolution of xn(t) for If 6 0 and different forms of 0.

In the current simulation =n = 0. Therefore, the average value for zn(t) is the origin.
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Since the amplitude of c3oi (t) is high, rn(t) fluctuates noticeably around the origin with

a loss of its original selectivity (Figure 12).

6. Recovery from the effects of deprivation (RE)

Recovery after a period of monocular deprivation is simulated by changing the input

to the cell to that of NR. In this case the eye that was closed during the MD regains the

response properties that it acquired during the initial period of NR (Figure 13). However,

if the two eyes are assumed to have become misaligned during the period of MD, then

during the recovery period the input must be given by Eq. 21. Uncorrelated input to a

cell that is already completely shifted to one eye does not produce any significant changes

and the initially deprived eye never recovers. Since strabismus is sometimes a result of

MD, this may explain why recovery of normal binocularity is sometimes, but not always,

observed.

As already mentioned, the loss of binocularity during uncorrelated patterned input

to the two eyes is not strongly dependent on any of the parameter settings and is solely

due to a lack of correlation in the input from the two eyes. However, if the eyes are

assumed to be aligned during a recovery period after MD, the properties of the noise

ni(t) become important. As the variance of the noise increases (i.e. as n2 goes up),

the rate of recovery of the initially deprived eye synapses increases. Since n2 is always

assumed to be nonzero, using Eq. 17 for the input to the cell always leads to a stable,

selective equilibrium state that is binocular.
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DISCUSSION

1. Comparison with experiment

Our simulations show that the BCM theory leads to an evolution of the cell response

to equilibrium states in agreement with "classical" visual deprivation experiments in kit-

ten striate cortex. The simulations were produced with a single set of parameter settings

and each simulation was started using the equilibrium state of a preceding simulation

(with the exception of NR which started from randomized synaptic weights). Starting a

simulation from the equilibrium state of a preceding simulation is not necessary; however,

this facilitates comparison of simulations with experimental results.

Of particular interest is the relative timing for various effects during the simulated

forms of deprivation (Figure 14). To facilitate comparisons of the timing of synaptic

modification across the various simulations, as well as comparisons of simulations with

actual experimental observations, we can convert simulation time (i.e. iteration) to

real time. It is understood, of course, that this conversion is primarily for comparative

purposes, and would be affected by such things as the age of the animal, periods of sleep,

etc. These caveats notwithstanding, we can use MD to calculate a conversion of iteration

to real time. At the height of the critical period MD leads to a loss of responsiveness to

the closed eye in approximately 24 hours (Mioche and Singer, 1989). In the simulation,

with our parameter choice, the closed eye disconnects in approximately 67,000 iterations.

Therefore, with these parameters, 1 iteration corresponds to about 1.3 seconds of real

time.

Thus, in the simulation of RS, the deprived eye disconnects significantly in 24 hours

and almost completely by the 4 8th hour. During the BD simulation, there is a significant

loss in responsiveness during the first 24 hours; however, thereafter some responsiveness

is retained. ST simulations lead to a disconnection of one eye in approximately 14 hours,

which is more severe than MD. During NR simulations, once the cell response begins to

increase after about 10 hours of patterned experience, it climbs rapidly during the next

14 hours to near its final state. The recovery of the previously closed eye during RS

simulations also occurs on the order of a day. Notice in the RS simulation, however, that
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the previously closed eye does not begin to recover until 0 is sufficiently low to allow the

poor cell response to exceed it; this takes about 24 hours. By this time the currently

closed eye is almost completely disconnected. When normal, binocular input is restored

after a period of MD, the recovery of the closed eye in the simulation takes place on a

much longer timescale, showing gradual gains over 3 days.

The kinetics of our simulations are in good agreement with experimental results.

The loss of closed eye responsiveness during simulations of MD and RS occurs over

approximately the same timescales of 24 hours and 24 to 48 hours, respectively, agreeing

with the experimental findings of Mioche and Singer (1989). Mioche and Singer (1989)

hypothesize that the same mechanism is at play in the disconnection of the closed eye

during these two experiments; this idea can be accounted for in the BCM theory by the

theoretical result that noise input to a set of synapses at a time when the modification

threshold is high leads to a decrement in their respective synaptic weights. The rapid

loss of one eye's synaptic efficacy during the ST simulation is actually more severe than

the deterioration of the closed eye synaptic weights during MD. (This is one illustration

of a general consequence of the theory - the rate of disconnection increases with increased

fluctuations of input to the deteriorating eye.) Although we know of no experimental

evidence that specifies the absolute rate at which one eye's responsiveness is lost during

ST, the final monocular state of m(t) obtained during the ST simulation agrees with

all of the experimental findings. The loss of responsiveness during the BD simulation

also has many features in agreement with experiment: it is less severe than MD on the

short-term and leads to a generally poor, unselective response on the long-term.

The evolution of open eye synaptic weights during the simulation of MD and the

effective eye synaptic weights during the simulation of ST leads to an enhancement of

the cell response to that eye. In the case of the MD simulation the enhancement in

the open eye response does not occur until after the closed eye is almost completely

disconnected, which appears to be in keeping with the experimental results of Mioche

and Singer (1989) in those instances where they do see an enhancement of the open eye

response. Experimental confirmation of the increase in effective eye response during the
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ST simulation is more difficult to determine since there are apparently no studies that

have directly investigated this point. However, we emphasize that, unlike the discon-

nection of the closed eye during MD and RS, this increased responsiveness depends on

parameters, the form of 0 and the properties of the equilibrium state obtained during

the prior period of NR.

The largest potential discrepancy between the kinetics of the simulations and ex-

perimental findings is the quick recovery of the currently open eye during RS. Experi-

mentally, the recovery of this eye is a slow and incomplete process, taking from 48 to

72 hours just to exhibit partial recovery (Mioche and Singer, 1989). In the simulation,

on the other hand, the recovery is rapid and complete within approximately 24 hours;

once the cell response to patterned input begins to exceed 0 the synapses receiving the

patterned input recover in a robust fashion. To slow down the recovery of the open

eye during RS other features would likely have to be incorporated; these might include

changes in modifiability with increasing age (i.e. the critical period) and the potential

irreversible loss of some connections that are deprived for too long. It is also possible

that Mioche and Singer (1989) underestimate the speed of recovery of a healthy cell since

they are recording from neurons that may have deteriorated after several days of chronic

recording.

2. Sensitivity of results to parameter values

We now discuss the dependence of our results on the choice of parameters (see Table

3). Consider first RS. As mentioned, Mioche and Singer (1989) find that the newly closed

eye's ability to drive the postsynaptic cell significantly lessens before the currently open

eye input to the cell strengthens. In order for us to obtain this result the modification

threshold 0 must drop sufficiently slowly with the advent of the RS while n2 $ 0 along

the closed eye fibers (Eq. 23a). Keeping 0 high guarantees both the disconnection of the

closed eye from the cell, as long as n2 0 0, and the lack of a recovery in the open eye

until the closed eye disconnects. Comparisons with experiment indicate that 0 should

drop from its pre-RS level to the low level of the postsynaptic response during the initial

stages of a RS in approximately 24 to 48 hours.
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The rate of change of 0 is determined by the memory of the cell response time

average (r) and the definition of 0. In these simulations r corresponds to 22 minutes of

real time. As we have discussed before, 7 cannot be arbitrarily increased (for a given

value of q) without introducing unwanted oscillations. Setting 7 approximately equal

to 24 hours would produce the desired evolution of the synapses during RS; however, -

would now be much too large for the current value of q to lead to acceptable behavior

during NR (Section 1, Results). Therefore, for 0 to stay above the prevailing low

postsynaptic response (c) for more than 22 minutes during the initial stages of a RS, it

must have a dependence on something other than just the response c itself. In this paper

we have defined 0 in terms of c.(t) and, as the results indicate, this form of 0 produces

the desired evolution of the synapses during RS.

The critical difference between c(t) and c.(t) in the time average for 0 is the average

level of the spontaneous activity (d.). As d. increases, c.(t) depends less upon the

cell response to patterned input per se and more upon the overall average fiber activity,

including the spontaneous activity, as well as on the synaptic weights themselves. Making

0 dependent on total depolarization rather than deviations of the depolarization from its

average level reduces its sensitivity to sudden changes in the visual environment. When

removal of patterned input to a cell leads to a radical change in the cell response, 0

adjusts more slowly to the change with larger values of d,. In the current simulations

d. = 5.0 which keeps 0 sufficiently high to prevent the open eye from recovering during

RS until the closed eye is almost completely disconnected.

With our parameter choice, the maximum displacement from spontaneous LGN

fiber activity for pattern input is 1.0 (dy,,k + dbMe - d, = 1.0), which is much smaller

than d. (Table 2). However, it is not required that the average level of the spontaneous

activity be as large as 80% of the total LGN response to patterned input to produce a

significant disconnection of the closed eye during RS before the open eye recovers. There

are two reasons. First, for d. as small as 0.2 (20% of the LGN response to patterns), there

is a significant (gz 60%) drop in the closed eye response before the open eye recovers.

Second, the magnitude of d, can also be interpreted as the frequency of occurrence of
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patterned LGN input activity against a continuous background of noise. From this point

of view increasing d5 amounts to decreasing the occurrence of patterned LGN input as

compared to noisy LGN input. Simulations with dpeij = 100, d. = 10 and patterned

input occurring every 6th iteration between 5 consecutive iterations of noise input leads

to an evolution of the synaptic weights that is quite similar to Figures 6-13.

kbor n2 6 0 the closed eye is guaranteed to disconnect during MD since the open

eye ratio of optimal to nonoptimal patterns remains small (Eq. 24). Therefore, for the

simulations to be consistent with the MD experimental findings n2 0 0. Notice that the

mechanism of the closed eye disconnection is the same during MD and RS, as long as 0

drops slowly during RS and the cell response to open eye input remains selective during

MD.

Two other experiments that help set the magnitude of n2 are ST and RE. In the

ST simulation one of the two eyes completely disconnects from the cell in approximately

14 hours, whereas it takes approximately 24 hours for a disconnection of the closed eye

input during MD. If the rates of change of the two sets of synapses actually occur on

the same timescale during ST and MD, then the time for disconnection in MD could

be decreased to 14 hours by increasing the magnitude of n2 . However, changing n2

also changes the rate at which the closed eye recovers during RE (Section 6, Results).

Therefore, detailed quantitative knowledge of the time rates of cell response changes

during experiments of MD, ST and RE would lead to more stringent constraints on n2 .

With q/, r and n2 set by NR, MD, RS, ST and RE, and with a given form of 0, the

evolution of the synapses during the initial stages of BD is fixed. With the onset of BD the

cell response drops rapidly. In the current simulations both eye's LGN-cortical synaptic

weights significantly weaken as 0 drops to the prevailing postsynaptic cell response over

the first 24 to 48 hours. The si.tuation is reminiscent of RS where the cell response is low

and 0 is initially high and drops slowly due to the large value of d,; however, in the BD

simulation there is no patterned input to an eye that eventually increases cell response,

and therefore 0. It follows that once 0 reaches the low response level during BD, the rate

of weakening of the synaptic weights gradually diminishes.
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As detailed in the Results, the long-term evolution of the synapses during BD

depends on parameters such as W and Co0, Iin addition to n2 . The parameters Wand C

have subtle effects on the evolution of the synapses during simulations of NR, MD, RS,

and ST, as well. For example, with the onset of patterned binocular input to "immature"

synapses (i.e. NR), the high level of 2i, prevents both eyes from immediately acquiring

selectivity and responsiveness (Figure 14); with the current parameter settings it takes

about 10 hours for the cell to sort out the LGN evoked response from the high levels of

postsynaptic noise. The eventual acquisition of selectivity in the presence of such large

levels of noise (C.oie = 33.3, Table 2) demonstrates that the system is robust to large

fluctuations in the postsynaptic response. In the ST simulation the slight retention of

response to stimulation of the disconnected eye is also due to the large level of c., ei.; if

c2 0ise2 is set to 0, then the weak eye immediately loses its ability to evoke any response

from the cell. Finally, large levels of oie generally decrease the rate at which the closed

eye synapses disconnect during MD and RS since the assumptions leading to Eq. 23a

are weakened.

Apart from BD, other effects of changing T appear during MD and RS. As W de-

parts from 0, the approximations leading to Eq. 23a become less valid (see appendix).

Therefore, the rate of disconnection of the closed eye synapses begins to decrease for WE

sufficiently large in both the MD and RS cases.

The parameters p and co are not rigidly set by simulations of the "classical" ex-

periments. In the current simulations we choose p = 2; this produces a nonlinearity in

the calculation of 0 that is in keeping with the theory. co is chosen sufficiently large to

insure that 0 is below the majority of the cell's responses at the start of NR, leading

to an initial enhancement of the cell's responsiveness. Other than these considerations,

there are as yet no binding experimental constraints on p and co.

The slopes of 0 at the origin (to) and at 0 (ee) are strictly constrained, such that

to < 0 and to > 0. As Eq. 23 indicates, their magnitudes provide another degree of

freedom in controlling the disconnection of the closed eye, or eyes, during MD, RS and

BD. However, there are not yet any experimental results that directly determine these
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magnitudes. The uncertainty in the magnitudes to and ce suggests a certain freedom

in specifying the exact functional form of 0. Although 4 < 0 for 0 < c < 0 and 4 > 0

for c > 0, as many simulations show, the exact form of 0 in these two regions does not

appear to be critical. Perhaps of more interest is the dependence of 4 on c for c < 0.

The only theoretical constraint on 4 is that it must not be too negative for c < 0 (see

appendix).

In summary, NR places constraints on p, r, q and co. RS, with the closed eye

disconnecting before the open eye recovers, places constraints on r and the form of 0.

Once r and the form of 0 are set by RS, the evolution of the synaptic weights during BD

is fixed. The closed eye disconnection during MD, RS and BD indicates that n2 > 0. The

rate of disconnection of the closed eye during MD and RS as compared to the loss of cell

response to one eye's input during ST, together with the recovery of the previously closed

eye during RE, places constraints on the magnitude of n2 . The parameter settings W and

C.o2,4 have secondary consequences that affect the equilibrium states and the rapidity

with which they are reached during simulations of several of the paradigms, especially

BD. In this paper we have set the non-LGN postsynaptic fluctuations about the cell's

spontaneous level, so that sj is 0. With the constraints on the parameters just

outlined, a major implication of this investigation is that the modification threshold 0

changes from its value acquired during monocular deprivation to near 0 on the order of

24 to 48 hours of reverse suture.

3. Alternate forms for 0

We emphasize that the definition of 0 in Eq. 16 is just one of several possibilities

that has the properties outlined in the Methods (Section 3). Another possibility, for

example, is 0 defined by Eq. 15, where the nonlinearity is applied to the cell response

before the averaging takes place. Although the different dependences of 0 have relatively

small effects on the evolution of synapses during the different paradigms described in

the present work, they have very different mathematical properties and strikingly differ-

ent physiological implications. Preliminary investigation indicates that they might also

have different consequences on the simulated outcomes of various pharmacological exper-
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iments, such as the blockade of cortical NMDA receptors (Bear et al., 1990). Regardless

of its exact form, the RS finding of Mioche and Singer (1989) implies that the threshold

slides from its NR value to near 0 in approximately 24 to 48 hours.

4. Extension to networks

The single cell results presented here can be interpreted within the framework of a

cortical network of cells. As mentioned in the introductory paragraphs of the Methods,

placing the single cell in a mean-field network does not change the position and/or

stability properties of the equilibrium states; however, there may be changes in the

dynamics of the evolution of the synapses during simulations of the paradigms considered

here that may refine some of the constraints on the parameters. In this context the

validity of the mean-field approximation becomes an interesting experimental question.

For if the intracortical connections can be described as an average effect on a cell, then

the single cell simulations are an accurate description of what is happening in a network.

Placing the single cell in a network of cells has other important consequences. For

example, in the single cell simulations the spontaneous activity increases and decreases

with the cell's synaptic weights (Eq. 9). However, in a network of cells the spontaneous

activity of any one cell is not necessarily tied so closely to its LGN input. In fact, all

of the influence to a cell from other excitatory and inhibitory cells in a network could

possibly make the spontaneous activity of a cell to some extent independent of its LGN

input. This is a complicating factor not explicitly considered in the present work.

5. Possible mechanisms

We are now led to the question of the biological basis of the theoretical form of mod-

ification employed successfully in this paper. Our work suggests that the modifications

of interest may occur mainly at excitatory geniculocortical synapses; the postsynaptic

responses at these synapses are mediated by excitatory amino acid receptors. Thus,

mechanisms linked to excitatory amino acid receptors seem to be an appropriate place

to look for the molecular basis of visual cortical plasticity.

Theory requires that input activity that coincides with postsynaptic activation be-

yond 0 leads to an enhancement of synaptic efficacy. Work on the hippocampus and
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visual cortex in vitro has shown that the pairing of input activity with postsynaptic

depolarization can lead to a long-term potentiation (LTP) of the active synapses (Kelso

et al., 1986; Gustaffson et al., 1987; Artola et al., 1990; Frignac et al., 1990). In these

locations LTP induction appears to depend upon a voltage-dependent Ca2+ conductance

that is mediated by N-methyl-D-aspartate (NMDA) receptors. Thus, Bear et al. (1987)

have proposed that 0 might be related to the membrane potential at which the NMDA

receptor dependent Ca2+ flux reaches the threshold for inducing synaptic long-term po-

tentiation.

One consequence of the association of 8 with NMDA receptor mechanisms is that

input activity which consistently fails to correlate with postsynaptic activation sufficient

to recruit an NMDA receptor mediated Ca2+ flux should lead to a long-term depression

(LTD) of synaptic efficacy. Such a form of modification has been observed recently in

both hippocampus (Chattarji et al., 1989; Stanton and Sejnowski, 1989; Staubli and

Lynch, 1990) and visual cortex (Artola and Singer, 1990; Bear et al., 1990; Fr~gnac et

al., 1990; Kimura et al., 1990). The mechanism of this form of plasticity is unknown;

however, recent experimental evidence suggests that activation of a class of non-NMDA

receptors (the "metabotropic" quisqualate receptors) stimulates the hydrolysis of mem-

brane inositol phospholipids in kitten striate cortex (Dudek and Bear, 1989). These

considerations have led to the suggestion that phosphoinositide hydrolysis might provide

the biochemical trigger for use-dependent decreases in synaptic efficacy (Bear, 1988;

Dudek and Bear, 1989; Bear and Cooper, 1990). In this context it is interesting to note

that the developmental time-course of excitatory amino acid stimulated phosphoinositide

turnover correlates precisely with the critical period for synaptic modification in kitten

visual cortex (Dudek and Bear, 1989).

Another consequence of the association of 0 with NMDA receptor mechanisms is

that the effectiveness of NMDA receptor activation in triggering synaptic modification

should be a function of the recent history of cortical cell activity (Bear et al., 1987; Bear

and Cooper, 1990). In principle, this could occur in a number of ways including the

activity-dependent regulation of NMDA receptor sensitivity, postsynaptic Ca2+ buffers
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or pumps, Ca2+ activated enzymes, opposing mechanisms of synaptic weakening, etc.

Our work suggests that the value of 0 is low after approximately 48 hours of binoc-

ular deprivation in kitten striate cortex. Recent data suggests that although the density

of NMDA receptors is unaffected by 4-6 days of binocular deprivation (Reynolds and

Bear, 1990), NMDA stimulated iSCa2+ accumulation is significantly decreased in vi-

sual cortical slices prepared from binocularly deprived (but not monocularly deprived)

animals (Feldman et al., 1990). One explanation (among many) for this result is that

cortical inactivity causes a decrease in intracellular Ca2+-binding proteins. This hypoth-

esis is particularly attractive in light of work by Holmes and Levy (1990) and Zador

et al. (1990) suggesting that induction of LTP by NMDA receptor activation might be

particularly sensitive to changes in calcium buffers in dendritic spines. Regardless of the

mechanism, however, these 45Ca2+ uptake experiments indicate that cortical calcium

homeostasis can vary significantly as a function of activity.

Detailed discussions of these hypothetical molecular mechanisms have been pub-

lished elsewhere (e.g. Bear and Cooper, 1990; Bear and Dudek, 1990). Regardless of

whether these specific hypotheses ultimately prove to be correct, this work demonstrates

that the theory developed here can serve as a bridge between molecular mechanism- and

a description of visual cortical plasticity. We are able to follow a long chain of arguments

and to connect in a fairly precise way, various hypotheses with their consequences. The

understanding this provides, we believe, makes visual cortex an ideal preparation with

which to study the mechanisms of experience-dependent synaptic modification and its

relation to behavior.
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APPENDIX

To show why the closed eye disconnects during MD we analyze in more detail the original

arguments given by BCM (1982). According to Eq. 13 the modification of the synaptic

weights occurs as the product of the input activity di and 0,. When nonoptimal patterns

are presented to the open (right) eye and noise to the deprived (left) eye, the cell response

falls near zero. At this low level of cell response, 0 can be approximated by a line with

a negative slope -c; that is, 0, ; -cc (Figure 8). Therefore, the jth left eye synaptic

weight modifies as the product of -cc and its input activity n(t):

dm!(t)
dt

Substituting the definition of c (Eq. 12) into Eq. Al gives

d - T/(_0 [m,(t).L h(t) n](t) + m"(t), -d(t) n](t))] (A2a)

or N g l N X )
dt) k ( [ mtnk)) ,it +( m(t) d' (t)) nj(t)]. (A2b)

k-1 k-I

Averaging Eq. A2b over No nonoptimal opvn eye patterns, where No is small compared

to the number of iterations necessary for a significant change in the synaptic weights,

yields

==_ Ng1  No Ngi Nodk)((t). Ct (t),
fktl 7n-I, t kil I

(A3)

where the double bar represents the average change to the jth left eye synaptic weight

over the No nonoptimal patterns. Note that t,, s = 1,..., N0 , denotes No iterations of

the simulation centered at time t; the synaptic weights are assumed to change negligi-

bly during the No iterations. Since the noise inputs to the different left eye fibers are

independent of each other,

No  No 1 No.I ['. F .t].., (-no2

I



for k 6 j and
1 No No n  (A4b)

No E nk(t.)ni(t.) _-nj(t,)2
6=1 0 6=1

for k = j. Using Eq. 8 for dl(t.),

No No No
1 dE(ts) n(t) = + - ( ). (A5a)

Since the noise on the right eye fibers is independent of the noise and patterns on the

left eye fibers, Eq. A5a is equivalent to

N0  1 No1 No NoE[aool Ns_ dr,"] [.oo sf, En](t8)] + [ = ~ nL (ts)]IEs=Zn](ta)] = d: (-)2. (A5b)

6=1 = 0__

Assuming that if % 0, Eq. A3 becomes

dC (-e)n2 rnj(t) (A6)

for the average change to the jth left eye synaptic weight when nonoptimal patterns are

presented to the open right eye.

Now when optimal patterns are presented to the responsive and selective open (right)

eye and noise to the deprived (left) eye, the cell response falls near 0. At this high level of

cell response, 0i can be approximated by a line with a positive slope C; that is, 4i s C (c-0)

(Figure 8). Therefore, the jth left eye synaptic weight modifies as the product of ( (c-0)

and its input activity nI(t):

dt s;qe( 0) nj' t). (A7)
di

Using the same averaging procedures and assumptions as for the nonoptimal patterns,

the average change to the jth left eye synaptic weight over the optimal open eye patterns

becomes

dt

The closed eye synaptic weights weaken when the open eye receives non-preferred

input (A6) and strengthen when the open eye receives preferred input (A8). To produce

2



the weakening signal (i.e. A6) we assumed that 4 -cc near 0. However, we are not

confined to this choice. In fact,

-, c 0, c > 0, ( gc= 0, <0, (A9)

is also a viable form for 0 near the origin. In this case Eqs. Al -A6 still hold for positive

responses near the origin. Since 4 = 0 for c < 0, any responses less than 0 lead to no

change in any of the synaptic weights. Let No+ represent the number of iterations where

c > 0 and No- represent the number of iterations where c < 0 (No = No+ + No-). The

average change to the jth left eye synaptic weight is simply Eq. A6 weighted by the ratio

No+/No:

_____ 11,No)-c"= () (A1O)
dt No

Therefore, for cell responses near the origin the closed eye synaptic weights still decrease,

but at a rate reduced by No+/No. Since No+ ;. No- for random, uniformly distributed

noise, the closed eye synaptic weights weaken at half the rate as compared to Eq. A6.

There are limitations, however, on the form of 4 near the origin. For example,

-cc, c 0,
cc, c < 0,

is an example of a function that does not produce a disconnection of the closed eye

synaptic weights for responses near the origin. As expected, for the No+ iterations

where c > 0 Eqs. Al - A6 remain valid. The analysis for the No- iterations where c < 0

is identical to Eqs. Al - A6 but with -c replaced by c. Therefore, the average change

to the jth left eye synaptic weight after No iterations is

m;d o -N o+(c n 2 r,(t). (A12)dt - 17 ( N o

For random, uniformly distributed noise in this case (i.e. No+ No-) the closed eye

synaptic weights would not weaken when the open eye receives non-preferred input. On

average they would increase in strength due to the open eye preferred input. Therefore,

to guarantee that the closed eye synaptic weights decrease during MD we take 4 > 0 for

c<0.
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FIGURE LEGENDS

Figure 1. Cartoon of a cortical neuron receiving LGN input from the left and right

eyes to illustrate the theoretical notation. The horizontal lines represent the LGN-

cortical fibers and the solid triangles represent their corresponding synaptic contacts.

The cell response c is a linear function of the left and right eye LGN-cortical input

activities, represented by the vectors d' and dr, and the left and right eye synaptic

weights, represented by the vectors mi and m'. c is obtained by multiplying the LGN

activity di of each fiber by its corresponding synaptic weight mj and summing over all

of the synapses to the cell.

Figure 2. Illustration of the types of LGN-cortical input used in the model. The top

row of this figure represents a horizontal bar of light on the retina (left), a vertical bar

of light on the retina (middle) and the retina in the absence of any stimulation (right).

In the middle row we illustrate the distribution of activity in a 2-dimensional array of

LGN neurons that might arise from these different types of retinal stimulation. The

important point of this figure is that different types of retinal stimulation are mapped

onto distinct distributions of LGN activity. We call LGN activity elicited when visual

contours are presented to the retina "pattern" input to the visual cortex. We call LGN

activity that arises in the absence of visual contours "noise" input to the cortex. As

illustrated in this figure, the important difference between pattern and noise input is

that for the former there are predictable relationships in the activities of the LGN cells,

whereas in the latter the activity of one LGN cell is independent of the activity of the

other LGN cells. Different patterns that arise from contours of different orientations, for

example, are distinguished by different distributions of correlated activity in the LGN

cells. The salient features of the LGN-cortical input can be captured in a 1-dimensional

array of LGN fibers, as shown in the bottom row. The pure patterns are described

mathematically by dpeake- {-1C[ -J;ig) ] }-i + dbae, where j denotes the fiber whose

activity is being calculated, j, is the fiber where the peak activity occurs for pattern

w, db.e. is the minimum fiber activity in a pattern, dp..k is the peak displacement in
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activity from db.e and y describes the rate at which the activity falls off with increasing

fiber distance from the fiber with peak activity. In the absence of retinal stimulation the

"LGN-cortical" input activity to the network (third row, right hand side) is assumed to

be randomly distributed about its spontaneous level, represented by the dashed line.

Figure 3. The 0 function. (A) The two important values of the cell response (c.(t)) are

the average level of the spontaneous activity (c.) and 9 above the average spontaneous

level (c. + 0). The essential properties of 4 (i.e. the negative slope, called e0 , for values

of ca just above c. and the positive slope, called es, through c, + 0) are illustrated by the

solid curves. In the simulations we set co = -3 and e. = 3. The dashed lines complete

the definition of 4) in terms of c, but are not rigidly specified by experiment. (B) Since

the departure of the cell response from its spontaneous level is the quantity of interest,

0 in Eq. 13 is defined in terms of c(t) which equals c.(t) - ce.

Figure 4. A simulation of NR for a cortical cell receiving one set of LGN-cortical afferent

fibers. The 3-dimensional figure shows the evolution of the cell's response to different

input patterns (stimulus "orientations") as a function of time, or iteration number.

Cross-sections through this figure at a given iteration can be viewed as the tuning curve

of the cortical neuron to stimuli of various orientations. There are Np patterns (stimulus

"orientations") in the training and testing set (Eq. 22); to produce the continuous curves

in the 3-dimensional graphs the cell's responses to the Np patterns at different times are

connected in a smooth manner. The graded color scale (upper left) is the legend for the

strength of the response: red corresponds to the maximum response, purple corresponds

to the minimum response and blue is at the level of spontaneous activity. This same

legend applies to all of the 3-dimensional graphs in Figures 6 through 13; therefore, the

strength of the cell response in one figure can be directly compared to the cell response

in any other figure. To illustrate how responses above 9 increase in strength and those

below 0 decrease in strength, three slices through the 3-dimensional graph are illustrated

to the right of the figure. The dashed white horizontal line represents the cell's level of

spontaneous activity and the solid white line represents the value of 0. As the tuning
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curve becomes more selective, 0 increases and eventually stabilizes the synaptic weights.

Figure 5. The sign and magnitude of the change to the jth LGN-cortical fiber (dmj/dt)

for different values of the fiber activity (dj) and the cell response (c). Notice that the

relative sizes of the four regions change as 6 (represented by the arrow) moves.

Figure 6. A simulation of normal rearing with binocular input. The initial state for

this simulation was randomized synaptic weights near 0. It ran for 200,000 iterations.

Note that the cell response becomes stable, binocular and selective. See Figure 4 for

response legend.

Figure 7. A simulation of monocular deprivation. The initial state for this simulation

was the stable, binocular, selective equilibrium state achieved during normal rearing

(Figure 6). This simulation ran for 200,000 iterations. Note the loss of responsiveness

of the closed eye. See Figure 4 for response legend.

Figure 8. The average change to the jth left eye synaptic weight (i.e. m.) when the

left eye set of LGN-cortical fibers carries noise and 0 is sufficiently far from 0. For cell

responses scattered around 0 the average change to m; is given by Eq. 23a, while for cell

responses scattered around 0 the average change to m; is given by Eq. 23b. Note that

[n!]2 = n2 for all j.

Figure 9. A simulation of reverse suture. The beginning state for this simulation was

the stable equilibrium state after monocular deprivation (Figure 7). This simulation ran

for 200,000 iterations. Note the loss of responsiveness of the newly closed eye before the

recovery of responsiveness of the newly opened eye. See Figure 4 for response legend.

Figure 10. A simulation of strabismus. The initial state was the stable, selective equi-

librium state after normal rearing (Figure 6). This simulation ran for 200,000 iterations.

Note that the cell response becomes monocular. See Figure 4 for response legend.

Figure 11. A simulation of binocular deprivation. The initial state was the stable,
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selective equilibrium state after normal rearing (Figure 6). This simulation ran for

200,000 iterations. Note that on the same timescale as monocular deprivation (Figure

7) the loss of responsiveness is not as severe during binocular deprivation. See Figure 4

for response legend.

Figure 12. The same binocular deprivation simulation as illustrated in Figure 11, but

graphed over 2,000,000 iterations. For longer such simulations the cell loses its selectivity

but retains some binocular responsiveness. See Figure 4 for response legend.

Figure 13. A simulation of recovery after a period of monocular deprivation. This

simulation ran for 200,000 iterations. Note that there is a recovery since the patterned

input to the two eyes is correlated. See Figure 4 for response legend.

Figure 14. Peak cell response versus iteration for 200,000 iterations of the normal

rearing, monocular deprivation, reverse suture, strabismus, binocular deprivation and

recovery simulations. These graphs represent the evolution of the left and right eye peak

cell responses taken from Figures 6, 7, 9, 10, 11 and 13, respectively. The dashed line is

at the cell's average spontaneous level (c = 0). See Figure 4 for response legend.
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TABLE LEGENDS

Table 1. List of Definitions.

Table 2. List of Parameters and Theoretical Constraints.

Table 3. Sensitivity of Results to Parameter Values. The value of the parameter either

has a critical effect on the results of the simulation (++), affects the outcome of the

simulation but is not critical (+), or does not affect the outcome of the simulation (0).

Blank spaces indicate that the effect of the parameter on the simulation has not been

studied in detail.
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"Spontaneous" Level of the Cell Response:

where dl = dr= Spontaneous activity of the LGN-cortical afferent fibers.

The Actual Level of the Cell Response:

C.a(t) =m(t) -d. (t) = m(t) -d' (t) + mr (t)

where da,(t) = Actual activity in the LGN-cortical afferent fibers.

The Cell Response Measured with Respect to the Spontaneous Level with
non-LGN Noise Superimposed:

c(t) =Ca,(t) - c8(t) + Cnoise(t) = m'(t) -d'(t) + mr(t) .dr(t) + Cnoi~e(t),

where d'(t) d' d(t) - d~j, dr (t) = dr (t) -d.r and cnoje(t) represents non-LON noise.

Components of d'(t) and dr(t) (Patterned Input):

d!(t) = d" + n!(t) = d-',' - d- + n()

dr(t) = d'";'" + nF(t) = d"! - d,+ njr(t),

where w represents one of the Np patterns of activity.

Components of d'(t) and dr(t) (Noise Input):

d1(t) =-i()

dj'(t) = nJ(t).

Rule for Synaptic Modification:

dm(t) = t7 0(c(t), 0(t)) d(t),
dt

wvhere____

C(t ct)o- m

Cat =Wat' dt'.
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Parameter Significance Theoretical Constraint Value Used
Ngi Number of LGN-cortical input None 12

fibers from one eye

Np Number of training patterns None 12

dpeak = 1.0

dl(r) Wth input pattern* None db ds =

y = 4.0

d, Level of spontaneous activity None d, = 5.0

Average value of the
n noise input along the None 0

LGN-cortical fibers
Average of the square

n 2  of the noise input along None 0.03
the LGN-cortical fibers

Starting values

rrij (0) of the synaptic weights None 0.0 to 0.1
for normal rearing

Average value
Cnoi-e of the non-LGN None 0

postsynaptic noise

Average of the square

Cnois e  of the non-LGN None 33.3
postsynaptic noise

The modification step size Upper bound that decreases 0.005
with increasing r

T Time constant in the Must lead to an adequate 1000
definition of 0 sampling of inputs

p Nonlinearity in the p > 1 2
definition of 0

Co Normalization constant in None 50
the definition of 0

• See legend of Figure 2
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Parameter NR MD RS BDISTIRE

NgI 0 0 0 0 0 0

NP 0 0 0 0 0 0

dw;I(r) 0 0 0 0 0 0

d, 0 0 1++ ++ 0 0

n 0 + + ++ 0 0

n2 0 ++ ++ ++ 0 ++

mI(r) (0) 0 0 0 0 0 0

Cuoise

nois + + + ++ + 0

77 ++ 0 0 0 0 0

r. ++ 0 ++ ++ 0 0

p ++

CO +


